Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNatList(nil)) → mark(tt)
active(length(nil)) → mark(0)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + 2·x2   
POL(active(x1)) = x1   
POL(and(x1, x2)) = 2·x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNat(length(V1))) → mark(isNatList(V1))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 2 + x1 + 2·x2   
POL(active(x1)) = x1   
POL(and(x1, x2)) = 2·x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2 + 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(active(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = 2·x1   
POL(isNatIList(x1)) = 2 + x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = 2·x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(isNatList(X)) → PROPER(X)
ACTIVE(zeros) → CONS(0, zeros)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ISNATILIST(ok(X)) → ISNATILIST(X)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
PROPER(s(X)) → S(proper(X))
ACTIVE(and(X1, X2)) → ACTIVE(X1)
U111(ok(X1), ok(X2)) → U111(X1, X2)
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
ACTIVE(U11(tt, L)) → S(length(L))
ACTIVE(s(X)) → ACTIVE(X)
U111(mark(X1), X2) → U111(X1, X2)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
PROPER(isNat(X)) → PROPER(X)
LENGTH(ok(X)) → LENGTH(X)
TOP(mark(X)) → PROPER(X)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
PROPER(isNatIList(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
LENGTH(mark(X)) → LENGTH(X)
TOP(ok(X)) → TOP(active(X))
PROPER(isNat(X)) → ISNAT(proper(X))
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ISNAT(ok(X)) → ISNAT(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
PROPER(and(X1, X2)) → PROPER(X1)
ISNATLIST(ok(X)) → ISNATLIST(X)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(length(cons(N, L))) → ISNAT(N)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
TOP(mark(X)) → TOP(proper(X))
PROPER(U11(X1, X2)) → PROPER(X1)
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(isNatList(X)) → PROPER(X)
ACTIVE(zeros) → CONS(0, zeros)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ISNATILIST(ok(X)) → ISNATILIST(X)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
PROPER(s(X)) → S(proper(X))
ACTIVE(and(X1, X2)) → ACTIVE(X1)
U111(ok(X1), ok(X2)) → U111(X1, X2)
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
ACTIVE(U11(tt, L)) → S(length(L))
ACTIVE(s(X)) → ACTIVE(X)
U111(mark(X1), X2) → U111(X1, X2)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
PROPER(isNat(X)) → PROPER(X)
LENGTH(ok(X)) → LENGTH(X)
TOP(mark(X)) → PROPER(X)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
PROPER(isNatIList(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
LENGTH(mark(X)) → LENGTH(X)
TOP(ok(X)) → TOP(active(X))
PROPER(isNat(X)) → ISNAT(proper(X))
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ISNAT(ok(X)) → ISNAT(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
PROPER(and(X1, X2)) → PROPER(X1)
ISNATLIST(ok(X)) → ISNATLIST(X)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(length(cons(N, L))) → ISNAT(N)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
TOP(mark(X)) → TOP(proper(X))
PROPER(U11(X1, X2)) → PROPER(X1)
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 11 SCCs with 29 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)
U111(ok(X1), ok(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U11(X1, X2)) → PROPER(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U11(X1, X2)) → PROPER(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = 2·x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(mark(X)) → TOP(proper(X)) at position [0] we obtained the following new rules:

TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(zeros)) → TOP(ok(zeros))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(X)) → TOP(active(X))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(ok(X)) → TOP(active(X)) at position [0] we obtained the following new rules:

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(ok(isNat(0))) → TOP(mark(tt))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(isNat(0))) → TOP(mark(tt))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
QDP
                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
The remaining pairs can at least be oriented weakly.

TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(and(x1, x2)) = x2   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
QDP
                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
The remaining pairs can at least be oriented weakly.

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(and(x1, x2)) = x2   
POL(cons(x1, x2)) = 1 + x2   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 1 + x1   
POL(isNatList(x1)) = 1 + x1   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
QDP
                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(length(cons(x0, x1)))) → TOP(mark(U11(and(isNatList(x1), isNat(x0)), x1)))
The remaining pairs can at least be oriented weakly.

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
active(and(tt, X)) → mark(X)
active(U11(tt, L)) → mark(s(length(L)))
active(zeros) → mark(cons(0, zeros))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNat(0)) → mark(tt)
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
The remaining pairs can at least be oriented weakly.

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 1   
POL(active(x1)) = 1 + x1   
POL(and(x1, x2)) = 1   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = 1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(U11(tt, x0))) → TOP(mark(s(length(x0))))
The remaining pairs can at least be oriented weakly.

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = x1   
POL(active(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 1   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 1   
POL(zeros) = 1   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
active(and(tt, X)) → mark(X)
active(U11(tt, L)) → mark(s(length(L)))
active(zeros) → mark(cons(0, zeros))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNat(0)) → mark(tt)
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
QDP
                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(and(tt, x0))) → TOP(mark(x0))
The remaining pairs can at least be oriented weakly.

TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(and(x1, x2)) = 1 + x2   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
QDP
                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
The remaining pairs can at least be oriented weakly.

TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( mark(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( ok(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( and(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\11/
·x2

M( U11(x1, x2) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( 0 ) =
/0\
\0/

M( cons(x1, x2) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( active(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( tt ) =
/0\
\0/

M( isNatList(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( zeros ) =
/0\
\1/

M( isNatIList(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( s(x1) ) =
/0\
\1/
+
/11\
\00/
·x1

M( proper(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( isNat(x1) ) =
/0\
\1/
+
/11\
\11/
·x1

M( length(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( nil ) =
/0\
\0/

Tuple symbols:
M( TOP(x1) ) = 0+
[0,1]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
active(and(tt, X)) → mark(X)
active(U11(tt, L)) → mark(s(length(L)))
active(zeros) → mark(cons(0, zeros))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNat(0)) → mark(tt)
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
QDP
                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
The remaining pairs can at least be oriented weakly.

TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1, x2)) = 1   
POL(active(x1)) = 0   
POL(and(x1, x2)) = 1   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = 1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
length(mark(X)) → mark(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(U11(x0, x1))) → TOP(U11(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U11(x0, x1))) → TOP(U11(proper(x0), proper(x1)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(nil) → ok(nil)
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.